College Name:						
Seat No:	Student's Name:					
Сору No:						
KARACHI U	NIVERSITY BUSINESS SCHOOL					
UN	IVERSITY OF KARACHI					
FINAL EXAMINATION	DECEMBER 2017; AFFILIATED COLLEGES					
BUSINESS	MATHEMATICS – II; BA (H)–322					
BBA – II						
Date: December 19, 2017	Max Time: 2.5 Hrs Max Marks: 60					
INSTRUCTIONS: 1. Attempt all questions. 2. Mobile phones or any of the examination room these devices before e	Do not write anything on the question paper. other communicating device will not be allowed in 1. Students will have to remove the batteries of entering the examination hall.					
Question # 01: For the following LP problem, gray the corner-point method.	10 Marks of the region of feasible solutions (if one exists) and solve by					
Maximiza $z = 4x + 8x$						

Maximize	$z = 4x_1 + 8x_2$
subject to	$x_1 + x_2 \le 20$
	$2x_1 + x_2 \le 32$
	$x_1, x_2 \ge 0$

Question # 02:

10 Marks

Destination					
Origin	1	2	3	Supply	
1	8	6	10	125	
2	4	9	8	150	
3	7	6	5	95	
Demand	110	85	175		

Given the data for a transportation problem.

- a. Use the northwest corner method to determine an initial solution
- b. Proceed on to solve for the optimal solution using the stepping stone algorithm.

Question # 03:

Determine f'(x) of the following:

i.
$$f(x) = (6x - 2)\sqrt{x^2 - 5x + 3}$$

ii.
$$f(x) = \frac{x}{(1-x^2)}$$

06 Marks

12 Marks

A ball is dropped from the roof of a building which is 256 feet high. The height of the ball is described by the function.

$$h = f(t) = -16t^2 + 256$$

where h equals the height in feet and t equals time measured in seconds from when the ball was dropped.

a. What is the average velocity during the time interval $1 \le t \le 2$?

b. What is the instantaneous velocity at t = 3?

c. What is the velocity of the ball at the instant it hits the ground?

Question # 05:

Question # 04:

Find the indefinite integral (if possible)

i. $\int \frac{2ax+b}{ax^2+bx} dx$

Question # 06:

Find the definite integral

i. $\int_{2}^{4} (x+8)dx - \int_{4}^{2} (2x-6)dx$

Question # 07:

The total cost of producing q units of a certain product is described by the function $C = 350,000 + 7,500q + 0.25q^2$

where C is the total cost stated in dollars

- a. Determine how many units q should be produced in order to minimize the average cost pr unit.
- b. What is the minimum average cost per unit?
- c. What is the total cost of production at this level of output?

END OF EXAM PAPER

05 Marks

05 Marks

12 Marks